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Half-lightlike Submanifolds of a semi-Riemannian Manifold with a Quarter-symmetric Non-metric
Connection

In this chapter we study half-lightlike submanifolds of a semi-Riemannian manifold admitting a
quarter-symmetric non-metric connection. In the present chapter we obtain the structure equations
for Einstein half-lightlike submanifold with a quarter-symmetric non-metric connection. We prove
some results on irrotational semi-Riemannian manifolds admitting quarter-symmetric non-metric
connection.

1 Preliminaries

A submanifold (M, g) of the manifold AM,@ is called half-lightlike submanifold if the
radical distribution Rad(TM ) = TM N TM <L is a subbundle of tangent bundle TM and normal bundle

TM L of rank 1. Therefore there exists non-degenerate complementary distributions S(TM ) and S(TM

1) of Rad(TM) in TM and TM +. These distributions are called screen and co-screen distribution
of M, such that

TM = Rad(TM) @ orth S(TM) (1.1)
and
TM L = Rad(TM) @ orth S(TM L) (1.2)

where @ otn is orthogonal direct sum. The half-lightlike submanifold is denoted by
(M, g, S(TM)).
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The algebra of smooth functions on the S(TM) is denoted by ' (S(TM)). Similarlythe algebra
of

S(TM)L = S(TM L) @ orth S(TM L)+
where S(TM 1)L is orthogonal complementary of S(TM 1) . For any null section ¢ of Rad(TM ) on a
coordinate neighbourhood U € M, there exists uniquely defined lightlike vector bundle (/trTM ) and a
null vector field N of ltr(TM)|u such that

g(&, N) =1,
G(N, N) =§(N, X) =§(N, L) =0, IXe T(S(TM)).

where N is lightlike transversal vector field, Itr(TM ) is lightlike transversal vector bundle and tr(TM ) is
transversal vector bundle with respect to screen distribution [?]. Thus tangent vector field T M can be
expressed as

TM =TM @ tr(TM)
[RGC/(TM) @ orth S(TM )] @ [S(TML) @ orth Itr(TIVI )]
= [Rad(TM) @ 1tr(TM)] @ orth S(TM) © ortn S(TM 1) (1.3)

Given a screen distribution S(TM ), there exists a unique complementary vector bundle tr(TM ) to
TM in T Mm . Using (1.1),(1.2) and (1.3), there exists a local quasi orthonormal frame field of M
along M given by

F={&N, L Wa),  a€ (L2 s ,m)

where {Wq} is orthonormal frame field of S(TM )|u . We shall assume that § is tangent to M and X,
Y, Z & W € I(TM). Let P be the projection morphism of TM on S(TM ) with respect to
decomposition of (1.1) and (1.2). Then the The local Gauss and Weingarten formula of M and
S(TM) are

UxY =VxY +Di(X Y)N + D2(X, Y)L (1.4)
; UxN = -AnX + p1(X)N + p2(X)L (1.5)
- VxL =-ALX + (X)N (1.6)
VxPY =V5%PY + C(X,PY)E (1.7)

T x€ = -ApX ~p1(X), (1.8)

where D1, D; are local lightlike and screen second fundamental forms of M and C is local second
fundamental form on S(TM ),AN,A§ and A, are called the shape operators, pi, p2 and ¢ are one

forms on TM and V and V~* are induced linear connection on TM and

JETIR1701766 ] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 497


http://www.jetir.org/

© 2016 JETIR June 2016, Volume 3, Issue 6 www.jetir.org (ISSN-2349-5162)

S(TM) We have
h(X,Y) =D1(X,Y)N + DX, V)L (1.9)

is second fundamental form tensor of M.

2 Structure Equations

Let M is manifold equipped with quarter-symmetric non-metric connection U and the

induced connection on the submanifold M. Consider V, /i’, R and R* are curvature

tensors of semi-symmetric non-metric connection on l\’h’, the induced connection on M

and induced connection on V*in S(TM ) respectively. Using Gauss-Weingarten formula on M and
S(TM ) we get Gauss-Codazzi equation for TM and S(TM ): The structure equations for quarter-
symmetric non-metric connection are defined as

/’é()(, Y)Z=€ngZ-€y€XZ-€[X,y]Z i
=Tx VyZ+Di(Y,Z)N + Da(Y, Z)L

~Vy [V xZ + D1(X, Z)N + D2(X, Z)L]

- VixviZ+Di([X,Y],Z)N + Dz ([X, Y],Z)L}

by using equation (1.4)

= R(X, Y)Z = R(X, Y )Z + Di(X, 2)AnY —D1(Y, 2)AnX
+ D2(X, 2)ALY —Da(Y, 2)AX
+ {(VxD1)(Y, Z) = (Vy D1)(X, Z) + p1(X)D1(Y, Z2)
—1t(X)D1(Y, 2) — pa(Y )D1(X, Z) + @(X)D1(X, 2)
~@(Y)D2(X, Z)}N + {(VxD2)(Y, Z)
—(V v D2)(X, 2) + p2(X)Da(Y, Z2) — (Y )D2(X, 2)}L (2.1)

is first structure equation for half-lightlike submanifold equipped with quarter-symmetricnon-metric

connection. Similarly other structure equations are

RO Y )N ==V x(ANY) + Ty (AvX) + An[X, Y]
+ {p1(X)ANY —p1(Y )ANX + p2(X)ALY
—p2(Y )ALX + D1(Y, AnX) —D1(X, AnY)
+ 2dpa(X, V) + @(X)p2(Y)
—@(Y)p2(X)}N + {D2(Y, ANX) = D2(X, AnY')
+2dp2(X, V) + pa(Y )p2(X) —p1(X)p2(Y ) }L (2.2)
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RO YL =V x(ALY) + Ty (ALX) + AL[X, Y] + o(X)AnY —o(Y )AnX
+ {Da(Y, AX) = Di(X, ALY ) + 2de(X, Y ) + p1(X)p(Y ) —pa(Y )p(X) I N
+ {D2(Y, AX) = D2(X, ALY) + (Y )p2(X) —p(X)p2(Y ) } L (2.3)

R(X,Y)PZ = R(X,Y)PZ + C(X, PZ)ALY -C(Y, PZ)AeX
+ {((VxC)Y, PZ)-(Vy C)(X, PZ) + C(X, PZ)[p1(Y) + ri(Y)]
= C(Y, PZ)[p1(X) + t(X)]} & (2.4)

and

R(X, Y)E = -Vi(AgY) + TV (AEX) + ALLX, Y]
+ p1(Y)AEX —p1(X)AL(Y) + (C(Y, ApX)
—C(X, AtY) -2dp1(X, Y)}€ (2.5)

forany X, Yand Z € T[(TM).
Let P is projection of TM on S(TM) then

X = PX +n(X)§ YXE M(TM)

Let {Fi, F2,...Fm-1} is an orthogonal basis of I'(S(TM)) . Here (I\’Z, g) is m-
dimensional semi-Riemannian manifold with index g = 1 and (M, g) is lightlike
submanifold of codimension 2 of M. A semi-Riemannian manifold M of constant
curvature c is called a semi-Riemannian space form and it is denoted by I\Z(c).The
curvature tensor R of I\Z(c) is given by

R(X, Y)Z = c[§(Y, Z)X + §(X, Z2)Y], ¥X,Y,Z € T(TM) (2.6)

Taking scalar product with L and £ to equation (2.6) we obtain
G(R(X,Y)Z L) =0and g(R(X,Y)Z € =0, ¥X, Y, Z€e [(TM).
By help of these equations and equation (1.4), we get

R(X, Y)Z =R(X, Y)Z + D1(X, 2)AnY —D1(Y, 2)AnX
+ Da(X, 2)ALY -Da(Y, 2)ALX, X, Y,Z€ [(TM) (2.7)

Definition 2.1. A half-lightlike submanifold M of a semi-Riemannian manifold M is
screen conformal if the second fundamental form D; and C satisfies

C(X,PY) = @Di(X,Y), iX, Y € T(TM).

where ¢ is non vanishing function on a coordinate neighbourhood Uin M.
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Theorem 2.2. Let M be irrotational half-lightlike submanifold of a Lorentzian space form M (c)
admitting quarter-symmetric non-metric connection such that ¢ is tangent to M . If M is screen
conformal then ¢ = 0.

Definition 2.3. A vector field X on a manifold is conformal killing if the Lie derivatives
Lx§ = -26§, where 6 is scalar function and the Lie derivative is defined as

(Lxd)(Y, Z) = X(G(Y, 2))-§(1X, Y1, Z) -§(Y, X, Z2)), 1 X, Z € T(TM)

If 6 =0 then X is called killing vector field on M.

Theorem 2.4. Let M be half-lightlike submanifold of a semi-Riemannian manifold Mjmitti'ﬁ’g
guarter-symmetric non-metric connection if the canonical normal vector fieldL is a conformal
killing one, then L is killing vector field.

Proof. By equation and we have

(LxG)(Y, Z) = §(T v X, Z) + §(Y, Ty X) -2n(X)3(Y, Z)

~

Uxl =-ALX + o(X)N

Since L is conformal killing vector field, so by help of equation and we have

67 xL, Z) = G(ALX, Y) + @(X)F(N, Y)
=Dy(X, Y) + o(X)n(Y) + o(X)G(N, Y)
= DX, Y) + o(X)n(Y) + o(X)n(Y)
Therefore g(VNXL, Y)=-D(X,Y)
Therefore (LxG)(Y,Z) =2D2(X,Y), VX, Y € T(TM)

Thus we have
Dy(X,Y)=6g(X,Y), IX,Y e T(TM)

Putting X =& and Y = ¢, we get
6=0

Therefore L is killing vector field. ]
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