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Half-lightlike Submanifolds of a semi-Riemannian Manifold with a Quarter-symmetric Non-metric 

Connection 

In this chapter we study half-lightlike submanifolds of a semi-Riemannian manifold admitting a 

quarter-symmetric non-metric connection. In the present chapter we obtain the structure equations 

for Einstein half-lightlike submanifold with a quarter-symmetric non-metric connection. We prove 

some results on irrotational semi-Riemannian manifolds admitting quarter-symmetric non-metric 

connection. 

 

1 Preliminaries 

A  submanifold  (M, g)  of  the  manifold M , g̃ is  called  half-lightlike  submanifold  if  the 

radical distribution Rad(TM ) = TM ∩ TM ⊥ is a subbundle of tangent bundle TM and normal bundle 

TM ⊥ of rank 1. Therefore there exists non-degenerate complementary distributions S(TM )  and S(TM 
⊥)  of Rad(TM) in TM and TM ⊥. These distributions are called screen and co-screen distribution 
of M , such that 

 
TM = Rad(TM) ⊕ orth S(TM) (1.1) 

 

and 

TM ⊥ = Rad(TM) ⊕ orth S(TM⊥) (1.2) 
 

where ⊕ orth is orthogonal direct sum. The half-lightlike submanifold is denoted by 

(M, g, S(TM )). 
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The algebra of smooth functions on the S(TM ) is denoted by Γ (S(TM )) . Similarly the algebra 

of 

S(TM )⊥ = S(TM ⊥) ⊕ orth S(TM ⊥)⊥ 

where S(TM ⊥)⊥ is orthogonal complementary of S(TM ⊥) . For any null section ξ of Rad(TM ) on a 
coordinate neighbourhood U ⊂ M , there exists uniquely defined lightlike vector bundle (ltrTM ) and a 

null vector field N of ltr(TM )|U such that 
 

g̃(ξ, N ) = 1, 

g̃(N, N ) = g̃(N, X) = g̃(N, L) = 0, ∀X  ∈  Γ (S(T M )) . 

where N is lightlike transversal vector field, ltr(TM ) is lightlike transversal vector bundle and tr(TM ) is 

transversal vector bundle with respect to screen distribution [?]. Thus tangent vector field T M̃  can be 

expressed as 

T M = TM ⊕  tr(TM ) 

= [Rad(TM ) ⊕ orth S(TM )] ⊕  [S(TM ⊥) ⊕ orth ltr(TM )] 

= [Rad(TM ) ⊕  ltr(TM )] ⊕ orth S(TM ) ⊕ orth S(TM ⊥) (1.3) 

Given a screen distribution S(TM ), there exists a unique complementary vector bundle tr(TM ) to 

TM in T M|M . Using (1.1),(1.2) and (1.3), there exists a  local  quasi orthonormal frame field of M̃  

along M  given by 

F = {ξ, N, L, Wα}, α ∈  {1, 2, ........... , m} 

where {Wα} is orthonormal frame field of S(TM )|U . We shall assume that ξ is tangent to M and  X, 

Y, Z  &  W  ∈  Γ(TM ).  Let  P  be  the  projection  morphism  of  TM  on S(TM ) with respect to 

decomposition of (1.1) and (1.2).   Then the The local Gauss and Weingarten formula of M and 

S(TM ) are 
 

∇̃  XY  = ∇ XY  + D1(X, Y )N + D2(X, Y )L (1.4) 

∇ XN  = −AN X + ρ1(X)N + ρ2(X)L (1.5) 

∇ XL = −ALX + φ(X)N (1.6) 

∇ XPY  = ∇ ∗
X P Y  + C(X, P Y )ξ (1.7) 

∇ Xξ = −A∗
ξ X − ρ1(X)ξ, (1.8) 

where D1, D2 are local lightlike and screen second fundamental forms of M and C is local second  

fundamental  form  on  S(T M ),AN , Aξ
∗  and  AL  are  called  the  shape  operators,  ρ1, ρ2  and φ are one 

forms on T M  and ∇  and ∇̃ ∗  are induced linear connection on T M  and 
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S(TM ) We have 

h(X, Y ) = D1(X, Y )N + D2(X, Y )L (1.9) 
 

is second fundamental form tensor of M . 
 
 

2 Structure Equations 

Let  M̃  is  manifold  equipped  with  quarter-symmetric  non-metric  connection  ∇̃   and  the 

induced  connection  on  the  submanifold  M .    Consider  ∇ ,  R̃,  R  and  R∗  are  curvature 

tensors  of  semi-symmetric  non-metric  connection  on  M̃ ,  the  induced  connection  on  M 

and induced connection on ∇∗ in S(TM ) respectively. Using Gauss-Weingarten formula on M and 

S(TM ) we get Gauss-Codazzi equation for TM and S(TM ): The structure equations for quarter-

symmetric non-metric connection are defined as 
 

R̃(X, Y )Z  = ∇̃  X ∇̃
h 

Y Z − ∇̃  Y ∇̃  XZ − ∇̃  
[X,Y ]Z  

i
 

= ∇̃  X     ∇̃  Y Z + D1(Y, Z)N + D2(Y, Z)L 

— ∇ Y  [∇ XZ + D1(X, Z)N + D2(X, Z)L] 

— 
 
∇ [X,Y ]Z + D1 ([X, Y ], Z) N + D2 ([X, Y ], Z) L

}
 

by using equation (1.4) 

 
⇒ R(X, Y )Z = R(X, Y )Z + D1(X, Z)AN Y  − D1(Y, Z)AN X 

+ D2(X, Z)ALY − D2(Y, Z)ALX 

+ {(∇ XD1)(Y, Z) − (∇ Y D1)(X, Z) + ρ1(X)D1(Y, Z) 

— π(X)D1(Y, Z) − ρ1(Y )D1(X, Z) + φ(X)D1(X, Z) 

— φ(Y )D2(X, Z)}N + {(∇ XD2)(Y, Z) 

— (∇ Y D2)(X, Z) + ρ2(X)D1(Y, Z) − π(Y )D2(X, Z)}L (2.1) 

is first structure equation for half-lightlike submanifold equipped with quarter-symmetric non-metric 

connection. Similarly other structure equations are 

 

R(X, Y )N  = − ∇ X(AN Y ) + ∇ Y (AN X) + AN [X, Y ] 

+ {ρ1(X)AN Y  − ρ1(Y )AN X + ρ2(X)ALY 

— ρ2(Y )ALX + D1(Y, AN X) − D1(X, AN Y ) 

+ 2dρ1(X, Y ) + φ(X)ρ2(Y ) 

— φ(Y )ρ2(X)}N + {D2(Y, AN X) − D2(X, AN Y ) 

+ 2dρ2(X, Y ) + ρ1(Y )ρ2(X) − ρ1(X)ρ2(Y )}L (2.2) 
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R(X, Y )L = − ∇ X(ALY ) + ∇ Y (ALX) + AL[X, Y ] + φ(X)AN Y  − φ(Y )AN X 

+ {D1(Y, ALX) − D1(X, ALY ) + 2dφ(X, Y ) + ρ1(X)φ(Y ) − ρ1(Y )φ(X)}N 

+ {D2(Y, ALX) − D2(X, ALY ) + φ(Y )ρ2(X) − φ(X)ρ2(Y )} L (2.3) 
 

 

 
 
 
 

 
and 

R(X, Y )PZ  = R∗(X, Y )PZ + C(X, PZ)Aξ
∗Y  − C(Y, PZ)AξX 

+ {(∇ XC)(Y, PZ) − (∇ Y C)(X, PZ) + C(X, PZ)[ρ1(Y ) + π(Y )] 

— C(Y, PZ)[ρ1(X) + π(X)]}ξ (2.4) 

 
 

R(X, Y )ξ = −∇∗
X (Aξ

∗Y ) + ∇ Y
∗ (Aξ

∗X) + Aξ
∗[X, Y ] 

+ ρ1(Y )A∗
ξ X − ρ1(X)Aξ

∗(Y ) + {C(Y, A∗
ξ X) 

— C(X, A∗
ξ Y ) − 2dρ1(X, Y )}ξ (2.5) 

 

for any X, Y and Z ∈  Γ(TM ). 

Let P is projection of TM on S(TM ) then 

 
X  = PX + η(X)ξ, ∀X  ∈  Γ(T M ) 

Let  {F1, F2, ...Fm−1} is  an  orthogonal  basis  of  Γ (S(T M ))  . Here  (M , g̃)  is  m- 

dimensional  semi-Riemannian  manifold  with  index  q ≥ 1   and   (M, g)   is   lightlike 

submanifold  of  codimension  2  of   M̃ . A  semi-Riemannian  manifold   M̃  of  constant 

curvature c is called a semi-Riemannian space form and it is denoted by 

curvature tensor R̃ of M̃(c) is given by 

M̃(c).The 

 

R(X, Y )Z  = c[g̃(Y, Z)X + g̃(X, Z)Y ], ∀X, Y, Z  ∈  Γ(T M ) (2.6) 

Taking scalar product with L and ξ to equation (2.6) we obtain 

g(R(X, Y )Z, L) = 0 and g(R(X, Y )Z, ξ) = 0, ∀X , Y , Z  ∈  Γ(T M ). 

By help of these equations and equation (1.4), we get 

 
R(X, Y )Z = R(X, Y )Z + D1(X, Z)AN Y − D1(Y, Z)AN X 

+ D2(X, Z)ALY  − D2(Y, Z)ALX, ∀X, Y, Z  ∈  Γ(T M̃) (2.7) 
 

Definition 2.1. A half-lightlike submanifold M of a semi-Riemannian manifold 

screen conformal if the second fundamental form D1 and C satisfies 

 
C(X, PY ) = φD1(X, Y ), ∀X, Y  ∈  Γ(T M ). 

where φ is non vanishing function on a coordinate neighbourhood U in M . 

M̃  is 
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Theorem 2.2. Let M be irrotational half-lightlike submanifold of  a  Lorentzian  space form M (c) 

admitting quarter-symmetric non-metric connection such that ζ is tangent to M . If M is screen 

conformal then c = 0. 

Definition 2.3. A vector field X on a manifold is conformal killing if the Lie derivatives 

LX g̃ = −2δg̃, where δ  is scalar function and the Lie derivative is defined as 

(LX g̃)(Y, Z) = X(g̃(Y, Z)) − g̃([X, Y ], Z) − g̃(Y, [X, Z]), ∀X, Z  ∈  Γ(T M ) 

If δ = 0 then X is called killing vector field on M . 

Theorem 2.4. Let M be half-lightlike submanifold of a semi-Riemannian manifold M admitting 

quarter-symmetric non-metric connection if the canonical normal vector field L is a conformal 

killing one, then L is killing vector field. 

Proof. By equation and we have 

 
(LX g̃)(Y, Z) = g̃(∇ Y X, Z) + g̃(Y, ∇ Y X) − 2π(X)g̃(Y, Z) 

∇̃  XL = −ALX + φ(X)N 

Since L is conformal killing vector field, so by help of equation and we have 

 
g̃(∇ XL, Z) = −g̃(ALX, Y ) + φ(X)g̃(N, Y ) 

= −D2(X, Y ) + φ(X)η(Y ) + φ(X)g̃(N, Y ) 

= −D2(X, Y ) + φ(X)η(Y ) + φ(X)η(Y ) 

Therefore   g̃(∇̃  XL, Y ) = −D(X, Y ) 

Therefore   (LX g̃)(Y, Z) = −2D2(X, Y ), ∀X, Y  ∈  Γ(T M ) 

Thus we have 

D2(X, Y ) = δg(X, Y ), ∀X, Y  ∈  Γ(T M ) 

Putting X = ξ and Y = ξ, we get 

δ = 0 
 

Therefore L is killing vector field. 
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