On a Half Lightlike Submanifold admitting aQuarter-symmetric nonmetric Connection

A. C. Pandey*

*Department Of Mathematics, Brahmanand College, Kanpur-208004, U.P.,India.Email: acpbnd73@gmail.com

Abstract

The object of the present paper is to study On a Half Lightlike Submanifold admitting a Quarter-symmetric non-metric Connection and some properties of quarter-symmetric non-metric connection.

2000 Mathematics Subject Classification: 53C15, 53C25.

Keywords Quarter-symmetric non-metric connection, Lightlike submanifold, Semi-Riemannian manifolds.

Half-lightlike Submanifolds of a semi-Riemannian Manifold with a Quarter-symmetric Non-metric Connection

In this chapter we study half-lightlike submanifolds of a semi-Riemannian manifold admitting a quarter-symmetric non-metric connection. In the present chapter we obtain the structure equations for Einstein half-lightlike submanifold with a quarter-symmetric non-metric connection. We prove some results on irrotational semi-Riemannian manifolds admitting quarter-symmetric non-metric connection.

1 Preliminaries

A submanifold (M, g) of the manifold $\widetilde{M}, \widetilde{g}$ is called half-lightlike submanifold if the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ is a subbundle of tangent bundle TM and normal bundle TM^{\perp} of rank 1. Therefore there exists non-degenerate complementary distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} . These distributions are called screen and co-screen distribution of M, such that

$$TM = \text{Rad}(\text{TM}) \bigoplus_{\text{orth}} S(\text{TM})$$
 (1.1)

and

$$TM^{\perp} = \text{Rad}(TM) \bigoplus_{\text{orth}} S(TM^{\perp})$$
(1.2)

where \bigoplus_{orth} is orthogonal direct sum. The half-lightlike submanifold is denoted by (M, g, S(TM)).

www.jetir.org (ISSN-2349-5162)

The algebra of smooth functions on the S(TM) is denoted by $\Gamma(S(TM))$. Similarly the algebra of

$$S(TM)^{\perp} = S(TM^{\perp}) \bigoplus_{orth} S(TM^{\perp})^{\perp}$$

where $S(TM \perp)\perp$ is orthogonal complementary of $S(TM \perp)$. For any null section ξ of Rad(TM) on a coordinate neighbourhood $U \subset M$, there exists uniquely defined lightlike vector bundle (*ltrTM*) and a null vector field N of *ltr*(TM)_{|U} such that

$$\begin{split} \tilde{g}(\xi,N) &= 1, \\ \tilde{g}(N,N) &= \tilde{g}(N,X) = \tilde{g}(N,L) = 0, \quad \forall X \in \Gamma(S(TM)). \end{split}$$

where N is lightlike transversal vector field, ltr(TM) is lightlike transversal vector bundle and tr(TM) is transversal vector bundle with respect to screen distribution [?]. Thus tangent vector field $T\widetilde{M}$ can be expressed as

$$TM = T\widetilde{M} \oplus tr(TM)$$

= [Rad(TM) $\oplus orth S(TM)$] $\oplus [S(TM^{\perp}) \oplus orth Itr(TM)]$
= [Rad(TM) $\oplus Itr(TM)$] $\oplus orth S(TM) \oplus orth S(TM^{\perp})$ (1.3)

Given a screen distribution S(TM), there exists a unique complementary vector bundle tr(TM) to TM in $TM_{|M}$. Using (1.1),(1.2) and (1.3), there exists a local quasi orthonormal frame field of \widetilde{M} along M given by

$$F = \{\xi, N, L, W_{\alpha}\}, \quad \alpha \in \{1, 2, ..., m\}$$

where $\{W_{\alpha}\}\$ is orthonormal frame field of $S(TM)_{|U}$. We shall assume that ξ is tangent to M and X, $Y, Z \& W \in \Gamma(TM)$. Let P be the projection morphism of TM on S(TM) with respect to decomposition of (1.1) and (1.2). Then the The local Gauss and Weingarten formula of M and S(TM) are

$$\widetilde{\mathbb{V}}_{X}Y = \mathbb{V}_{X}Y + D_{1}(X,Y)N + D_{2}(X,Y)L$$
(1.4)

$$\nabla_{\mathcal{X}} N = -A_N \mathcal{X} + \rho_1(\mathcal{X}) N + \rho_2(\mathcal{X}) L$$
(1.5)

$$\nabla_{X}L = -A_{L}X + \varphi(X)N \tag{1.6}$$

$$\nabla_{X} P Y = \nabla_{X}^{*} P Y + C(X, P Y) \xi$$
(1.7)

$$\nabla_{\mathbf{X}}\xi = -A_{\xi}\mathbf{X} - \rho_1(\mathbf{X})\xi, \qquad (1.8)$$

where D_1 , D_2 are local *lightlike* and *screen second fundamental forms* of M and C is *local second fundamental* form on S(TM), A_N , A_{ξ}^* and A_L are called the *shape operators*, ρ_1 , ρ_2 and φ are one forms on TM and \overline{V} and \overline{V}^* are induced linear connection on TM and

S(TM) We have

$$h(X, Y) = D_1(X, Y)N + D_2(X, Y)L$$
(1.9)

is second fundamental form tensor of M.

2 Structure Equations

Let \widetilde{M} is manifold equipped with quarter-symmetric non-metric connection $\overline{\mathbb{V}}$ and the induced connection on the submanifold M. Consider $\overline{\mathbb{V}}$, \widetilde{R} , R and R^* are curvature tensors of semi-symmetric non-metric connection on \widetilde{M} , the induced connection on M and induced connection on ∇^* in S(TM) respectively. Using Gauss-Weingarten formula on M and S(TM) we get Gauss-Codazzi equation for TM and S(TM): The structure equations for quarter-symmetric non-metric connection are defined as

$$\tilde{R}(X,Y)Z = \tilde{\mathbb{V}}_{X}\tilde{\mathbb{V}}_{Y}Z - \tilde{\mathbb{V}}_{Y}\tilde{\mathbb{V}}_{X}Z - \tilde{\mathbb{V}}_{[X,Y]}Z \qquad \mathbf{i}$$

$$= \tilde{\mathbb{V}}_{X}\tilde{\mathbb{V}}_{Y}Z + D_{1}(Y,Z)N + D_{2}(Y,Z)L$$

$$-\mathbb{V}_{Y}[\mathbb{V}_{X}\tilde{Z} + D_{1}(X,Z)N + D_{2}(X,Z)L]$$

$$-\mathbb{V}_{[X,Y]}Z + D_{1}([X,Y],Z)N + D_{2}([X,Y],Z)L^{\}}$$

by using equation (1.4)

$$\stackrel{\sim}{\Rightarrow} R(X, Y)Z = R(X, Y)Z + D_{1}(X, Z)A_{N}Y - D_{1}(Y, Z)A_{N}X + D_{2}(X, Z)A_{L}Y - D_{2}(Y, Z)A_{L}X + {(\[\bar{V}_{X}D_{1})(Y, Z) - (\[\bar{V}_{Y}D_{1})(X, Z) + \(\rho_{1}(X)D_{1}(Y, Z) - \(\pi(X)D_{1}(X, Z) + \(\phi(X)D_{1}(X, Z) - \(\phi(X)D_{1}(X, Z) + \(\phi(X)D_{1}(X, Z) - \(\phi(Y)D_{2}(X, Z))\]N + {(\[\bar{V}_{X}D_{2})(Y, Z) - (\[\bar{V}_{Y}D_{2})(X, Z) + \(\phi_{2}(X)D_{1}(Y, Z) - \(\pi(Y)D_{2}(X, Z))\]L (2.1)$$

is first *structure equation* for half-lightlike submanifold equipped with quarter-symmetric non-metric connection. Similarly *other structure equations* are

$$R(X, \tilde{Y})N = -\nabla_X (A_N Y) + \nabla_Y (A_N X) + A_N [X, Y] + \{\rho_1(X)A_N Y - \rho_1(Y)A_N X + \rho_2(X)A_L Y -\rho_2(Y)A_L X + D_1(Y, A_N X) - D_1(X, A_N Y) + 2d\rho_1(X, Y) + \varphi(X)\rho_2(Y) - \varphi(Y)\rho_2(X)\}N + \{D_2(Y, A_N X) - D_2(X, A_N Y) + 2d\rho_2(X, Y) + \rho_1(Y)\rho_2(X) - \rho_1(X)\rho_2(Y)\}L$$
(2.2)

$$R(X, \tilde{Y})L = -\nabla_X (A_L Y) + \nabla_Y (A_L X) + A_L [X, Y] + \varphi(X)A_N Y - \varphi(Y)A_N X + \{D_1(Y, A_L X) - D_1(X, A_L Y) + 2d\varphi(X, Y) + \rho_1(X)\varphi(Y) - \rho_1(Y)\varphi(X)\}N + \{D_2(Y, A_L X) - D_2(X, A_L Y) + \varphi(Y)\rho_2(X) - \varphi(X)\rho_2(Y)\}L$$
(2.3)

$$R(X, Y)PZ = R^{*}(X, Y)PZ + C(X, PZ)A_{\xi}^{*}Y - C(Y, PZ)A_{\xi}X + \{(\nabla_{X}C)(Y, PZ) - (\nabla_{Y}C)(X, PZ) + C(X, PZ)[\rho_{1}(Y) + \pi(Y)] - C(Y, PZ)[\rho_{1}(X) + \pi(X)]\}\xi$$
(2.4)

and

$$R(X, Y)\xi = -\nabla_{X}^{*}(A_{\xi}^{*}Y) + \nabla_{Y}^{*}(A_{\xi}^{*}X) + A_{\xi}^{*}[X, Y] + \rho_{1}(Y)A_{\xi}^{*}X - \rho_{1}(X)A_{\xi}^{*}(Y) + \{C(Y, A_{\xi}^{*}X) - C(X, A_{\xi}^{*}Y) - 2d\rho_{1}(X, Y)\}\xi$$
(2.5)

for any X, Y and $Z \in \Gamma(TM)$.

Let *P* is projection of *TM* on *S*(*TM*) then

$$X = PX + \eta(X)\xi, \quad \forall X \in \Gamma(TM)$$

Let $\{F_1, F_2, ..., F_{m-1}\}$ is an orthogonal basis of $\Gamma(S(TM))$. Here (\tilde{M}, \tilde{g}) is *m*dimensional semi-Riemannian manifold with index $q \ge 1$ and (M, g) is lightlike submanifold of codimension 2 of \tilde{M} . A semi-Riemannian manifold \tilde{M} of constant curvature *c* is called a semi-Riemannian space form and it is denoted by $\tilde{M}(c)$. The curvature tensor \tilde{R} of $\tilde{M}(c)$ is given by

$$\widetilde{R}(X,Y)Z = c[\widetilde{g}(Y,Z)X + \widetilde{g}(X,Z)Y], \quad \forall X,Y,Z \in \Gamma(T\widetilde{M})$$
(2.6)

Taking scalar product with L and ξ to equation (2.6) we obtain

 $\tilde{g}(\tilde{R}(X, Y)Z, L) = 0$ and $g(\tilde{R}(X, Y)Z, \xi) = 0$, $\forall X, Y, Z \in \Gamma(TM)$. By help of these equations and equation (1.4), we get

$$\widetilde{R}(X, Y)Z = R(X, Y)Z + D_1(X, Z)A_NY - D_1(Y, Z)A_NX + D_2(X, Z)A_LY - D_2(Y, Z)A_LX, \quad \forall X, Y, Z \in \Gamma(T\widetilde{M})$$
(2.7)

Definition 2.1. A half-lightlike submanifold M of a semi-Riemannian manifold M is screen conformal if the second fundamental form D_1 and C satisfies

$$C(X, PY) = \varphi D_1(X, Y), \qquad \forall X, Y \in \Gamma(TM).$$

where φ is non vanishing function on a coordinate neighbourhood U in M.

Theorem 2.2. Let *M* be irrotational half-lightlike submanifold of a Lorentzian space form *M* (*c*) admitting quarter-symmetric non-metric connection such that ζ is tangent to *M*. If *M* is screen conformal then c = 0.

Definition 2.3. A vector field X on a manifold is conformal killing if the Lie derivatives $L_X \tilde{g} = -2\delta \tilde{g}$, where δ is scalar function and the Lie derivative is defined as

$$(\widetilde{L}_{\mathcal{X}}\widetilde{g})(Y,Z) = \mathcal{X}(\widetilde{g}(Y,Z)) - \widetilde{g}([\mathcal{X},Y],Z) - \widetilde{g}(Y,[\mathcal{X},Z]), \forall \mathcal{X},Z \in \Gamma(TM))$$

If $\delta = 0$ then X is called killing vector field on M.

Theorem 2.4. Let *M* be half-lightlike submanifold of a semi-Riemannian manifold *M* dmitting quarter-symmetric non-metric connection if the canonical normal vector field*L* is a conformal killing one, then *L* is killing vector field.

Proof. By equation and we have

$$(L_{\mathcal{X}}\tilde{g})(Y,Z) = \tilde{g}(\tilde{\mathbb{Y}}_{Y}\mathcal{X},Z) + \tilde{g}(Y,\mathbb{Y}_{Y}\mathcal{X}) - 2\pi(\mathcal{X})\tilde{g}(Y,Z)$$
$$\tilde{\mathbb{Y}}_{\mathcal{X}}L = -A_{L}\mathcal{X} + \varphi(\mathcal{X})N$$

Since *L* is conformal killing vector field, so by help of equation and we have

$$\begin{split} \tilde{g}(\tilde{\mathbb{Y}}_{\times L},Z) &= -\tilde{g}(A_{L}X,Y) + \varphi(X)\tilde{g}(N,Y) \\ &= -D_{2}(X,Y) + \varphi(X)\eta(Y) + \varphi(X)\tilde{g}(N,Y) \\ &= -D_{2}(X,Y) + \varphi(X)\eta(Y) + \varphi(X)\eta(Y) \end{split}$$

Therefore $\tilde{g}(\tilde{\mathbb{Y}}_{\times L},Y) = -D(X,Y)$
Therefore $(L_{\times}\tilde{g})(Y,Z) = -2D_{2}(X,Y), \quad \forall X,Y \in \Gamma(TM)$

Thus we have

$$D_2(X,Y) = \delta g(X,Y), \quad \forall X,Y \in \Gamma(TM)$$

Putting $X = \xi$ and $Y = \xi$, we get

$$\delta = 0$$

Therefore *L* is killing vector field.

References

- Augre P., Blair D.E. and Carriazo, A., Generalized Sasakian Space Form, IsrealJ. Math 141 (2004), 157-183.
- [2] **Blair D.E.**, *Contact manifolds in Riemannian geometry*, Lecture Note in Mathe-matics, 509, Springer-Verlag Berlin, 1976.

- [3] **Chaubey S.K. and Ojha R.H.**, On quarter-symmetric non-metric connection on an almost *Hermitian manifold*, Bull. of Math Anal. and Application. Vol.2, Issue **2**(2010), 77–83.
- [4] De U.C. and Sengupta J., Quarter-symmetric metric connection on Sasakian manifold, Common Fac. Sci. Univ. Ank. Series Al Vol. 49(2000), 7–13.
- [5] **De U.C. and Sarkar A.**, On the quasi-conformal curvature tensor of a (k,μ) contact metric manifold, Math Reports **14(64)**(2012), 115–129.
- [6] **Duggal K.L. and Bejancu A.**, *Lightlike submanifolds of Semi-Riemannianian Manifold and Applications*, Kluwar Academic. Publisher, 1996.
- [7] **Duggal K.L. and Jin D.H.**, *Null curves and hypersurfaces of semi-Riemannian manifolds*, World Scientific, 2007.
- [8] Duggal K.L. and Sahin B., Differential Geometry of Lightlike submanifolds Frontier Mathematics, Birkhauser Vorlag A.G., Germany, 2010.
- [9] Golab S., On semi-symmetric and quarter-symmetric connections, Tensors N.S. 29(1975), 249-254.
- [10] Gray, A., Some global properties of contact structure, Ann., Math, 69(1959), 421-450.
- [11] Guines R., Sahin B. and Kilic E., On Lightlike hypersurfaces of a semi- Riemannian Space form, Turk. J. Math. 27(2003), 283-297.
- [12] Imai T., Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection, Tensor N.S., **23**(1972), 300-306.
- [13] Jeffery Lee M., Manifold and Differentiable Geometry, Graduate studies in Mathematics, American Mathematical Soc., Vol 107, 2009.
- [14] **Jin D.H.**, *Einstien Half-lightlike submanifolds of a Lorentzian space from with a semisymmetric non-metric connection*, Journal of inequalities and application, **1**(2013), 403.
- [15] Jin D.H., Non-tangential Half-lightlike submanifolds of semi-Riemannian manifolds with semisymmetric non-metric connections, Journal of Korean Math. Soc. **51**(2014)no.2, 311-323.
- [16] Jin D.H., Lightlike hypersurfaces of a trans-Sasakian manifold with a quarter- symmetric connection, Applied mathematical Sciences, Hikari Ltd, Vol. 9(2015), no. 28, 1393-1406.

- [17] Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103.
- [18] Klic E. and Bahadir O., Lightlike hypersurface of a product manifold and quarter-symmetric non-metric connections, Int. Jouranal of Maths. and Mathematical Sci. Hindawi. Volume (2012), Art I.D. 178390, 17 pages.
- [19] Matsumoto K., On Lorentzian para-compact manifold, Bull. of Yamagata Univ., Nat. Sci. 12(1989), 151-156.
- [20] **Mihai and Rosca R.**, *On Lorentzian P-Sasakian manifolds*, Classical Analysis, World Scientific Publication 1992, 155-169.
- [21] Mishra R.S. and Pandey S.N., On quarter-symmetric F-connection, Tensor N.S. 34(1980), 1–
 7.
- [22] **Mishra R.S.**, *Structures on differentiable manifold and their applications*, Chan- drama Prakashan, Allahabad, India, 1984.
- [23] Mondal A.K. and De U.C., Some properties of a quarter-symmetric connection on Sasakian manifold, Bull. Math. Anal. Appl. issue 3(2009), 99–108.
- [24] Rastogi S.C., On quarter symmetric metric connections, Tensor N.S. 14(1987), 133–141.
- [25] Rastogi S.C., A note on quarter-symmetric metric connections, Indian J. Pure Appl. Math 18 12(1987), 1107–1112.
- [26] Sengupta J. and Biswas B., Quarter symmetric non-metric connection on a Sasakian Manifold, Bull. Cal., Math. Soc, 2(2003), 169-176.
- [27] Sular S., Ozgur C. and De U.C., Quarter symmetric connection in a Kenmotsu Manifold, Sut. J. Math.,44 2(2008), 297-306.
- [28] Thorpe J.A., Elementary Topics in Differential Geometry, Springer-Verlag, New York, 1979.
- [29] Yano K., Kon M., Structures on Manifolds, World Scientific, 1984.
- [30] Yaser E., Coken A. C. and Yucesan A., Lightlike hypersurfaces in Semi- Riemannian Manifolds with semi-symmetric non-metric connection, Math, Scand., **102**(2008), no. 2, 253-264.
- [31] **Yucesan A. and Yasar E.**, *Lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connections*, Bull., Korean Math., Soc, **47**(2010), no.5, 1089-1103